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PREFACE

In this dissertation, I present my work on spontaneous emission and spectral analysis

using optical waveguide. The first part of the dissertation discusses the fabrication and

characterization of optical waveguide. In the Second part of dissertation, I presented

the fabrication of microspectrometer using planar waveguide. In final part of my

dissertation, I have discussed coupling efficiency of a quantum emitter on top of a

planar waveguide.

Chapter 1 begins with the introduction of waveguide, and their applications in

various field of science & technology. It describes the different technique of waveguide

deposition and why atomic layer deposition technique is better for waveguide depo-

sition. It also discusses different kind of microspectrometers and why the diffractive

optical element based microspectrometer has an advantage over other micropectrom-

eters. Final part of chapter 1 introduces the idea of an excited atom or molecule near

planar waveguide and its comparison with other fluorescence based microscopy. It

explains how to optimize the coupling efficiency of an excited atom or molecule near

planar waveguide.

Chapter 2 describes the high index step planar waveguide with low propaga-

tion loss. In this chapter, surface roughness and uniformity of high index film was

investigated by atomic force microscope and reflection spectrum in a wide spectral

range respectively. The propagation losses was measured by collecting light along the

guided path.

Chapter 3 describes the fabrication of microspectrometer by e-beam lithography.

This chapter also discusses the resolution of the devices in visible spectral range and

comparison with other microspectrometers.

v
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Chapter 4 is about the coupling efficiency of an exited atom placed near to

a waveguide. In this chapter, I have presented the effect of refractive index of film,

position of quantum emitter with respect to the waveguide and dipole matrix element

on coupling efficiency of a quantum emitter near planar waveguide.

Sincerely,

Pradeep Kumar.
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1

CHAPTER 1

Introduction

Waveguide is one of the basic component of integrated optics and optoelectron-

ics [1–4]. It consists of a substrate and a high refractive index thin film which confines

and directs light. Strong light confinement in a thin film is needed for many applica-

tions, i.e. in sensor applications strong confinement provides high sensitivity and in

integrated optical circuits that substitute micro-electronic circuits etc.

Optical waveguide can be classified according to their geometry, mode profile,

and refractive index distribution. By geometry of the cross - section, there are dif-

ferent types of waveguide; planar waveguide, strip waveguide, rib waveguide, and

photonic crystal waveguide etc. By mode structure: single-mode and multi-mode

waveguide. By refractive index distribution: step and gradient index waveguide.

Waveguides have many application such as in the field of bio-chemical sensor, mod-

ulators, resonators, and amplifiers [5–8] etc.

In this disertation we will exploit high index step waveguide, optical waveguide

as microspecrometer, and enhanced spontaneous emission near waveguide.

1.1 Large Index Step Waveguide By Atomic Layer Deposi-

tion

Strong confinement depends upon many parameters, out of which the large in-

dex step between core and cladding are most important. The silicon-on-insulator(SOI)

is the best choice for high index step between film ( silicon, refractive index = 3.45)

and substrate ( SiO2, refractive index = 1.45). Also it is compatible with comple-
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2

mentary metal oxide semiconductor (CMOS) fabrication process. Besides all benefits,

SOI is not transparent in visible range.

Other materials that are mainly used in construction of waveguides include

polymers, tantalum oxides(TaO2), titanium oxides(Ti2O2), magnesium oxide(MgO),

silicon dioxide(SiO2), aluminium oxide (Al2O3), and hafnium oxide (HfO2). Poly-

mers, magnesium oxide(MgO), and silicon dioxide(SiO2) based waveguides have low

index step. Tantalum oxides (TaO2), titanium oxides (Ti2O2), aluminium oxide

(Al2O3), and hafnium oxide (HfO2) based waveguides have high index step.

Aluminum Oxide (Al2O3) is a widely used waveguide material. It is cost effective

and the raw materials from which it is made are widely available unlike other high

index step materials. Due to the dielectric and electrical properties, Al2O3 is used

as an optical material in thin film devices. With respect to SiO2, it has a relatively

higher index allowing for light to be confined very well in the waveguide [9]. The most

critical optical waveguides properties are effective refractive index and optical loss.

The transmission window of Al2O3 ranges from 200 nm to 9 µm and the refractive

indices also range between 1.64 and 1.86.

Fabrication of nano-structures using techniques such as focused ion beam (FIB)

milling for use in an integrated photonic devices is more possible in Al2O3 waveguides

[10], because Al2O3 waveguide is not greatly affected by the implantation of Ga ion.

It is unlike SOI waveguide that is much more affected by Ga ion implantation. Thus

a reflection grating is easily realizable on an Al2O3 channel waveguide [11].

Optical waveguide mostly fabricated by plasma enhanced chemical vapor depo-

sition (PECVD), thermal vapor deposition, sol-gel, and pulsed layer deposition etc.

The atomic layer deposition waveguide films have not been studied extensively in the

literature, perhaps because of slow growth rate. We investigated optical and waveg-

uide properties of Al2O3 films on silicon and soda lime glass substrate deposited by
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atomic layer deposition.

1.1.1 Fabrication of Al2O3 Waveguide

Waveguides are fabricated by many techniques such as, plasma enhanced chem-

ical vapor deposition (PECVD), thermal vapor deposition, atomic layer deposition

(ALD), and sol-gel [13–17] etc. The atomic layer deposition [14–16] gives high thick-

ness uniformity due to its self-limiting nature, which reduces the losses due to surface

imperfection. The film growth in ALD occurs through layer by layer deposition re-

sulting in atomically smooth surface.

Aluminum oxide films made by atomic layer deposition usually have a higher

refractive index compared to those made by evaporation techniques. Low refractive

index with porosity leads to higher optical losses usually in the range of 15 to 25

dB/cm which can be attributed to the varying porosity throughout the amorphous

aluminum oxide matrix. On the other hand, films deposited by sputtering have

refractive indices in the range of 1.57 to 1.7, which is relatively higher when compared

to films produced by evaporation techniques and subsequent loss between 5 to 20

dB/cm [18]. Judging from the above films, it is evident that films with lower refraction

indices often have higher losses and are more likely to have porosity.

Aluminum oxide films are usually used in construction of various types of waveg-

uides that find application in a number of fields such as microelectronics and op-

tics [19]. This is primarily because Al2O3 films have a relatively high reflective index.

Amorphous Al2O3 has very promising optical properties especially for planar waveg-

uides. Atomic deposition produces high index aluminum oxide films that usually have

indices ranging from 1.64 to 1.86 with and optical loss is between 1 to 10 dB/cm at

632.8 nm.
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1.1.2 Optical and Waveguide Properties of Al2O3 Waveguide

The Al2O3 thin film is transparent in 200 nm to 9µm wavelength range and

most of the optical properties were investigated in spectral range 400 nm - 1000

nm [14,20]. The refractive index varies from 1.66 to 1.64 in spectral range of 400 nm

- 800 nm [14] and thorough investigation is needed to get refractive index of Al2O3 in

wide spectral range. Since optical properties of thin film deposited by atomic layer

deposition depends upon the substrate, as reported by Kim et al. [14], error should

be investigated thoroughly too.

We have measured a refelction spectra of Al2O3 thin film in spectral range 400

nm to 1800 nm. The measured reflection spectra then fit to the theoretical reflection

spectra. The film refractive index and film thickness was calculated from this fit and

the error was investigated by calculating mean squared error (MSE).

1.2 Waveguide Based Microspectrometer With a Computer

Generated Diffractive Optical Element

Spectrometer by definition is a device which resolve wavelength by angular or

spatial separation. Spectrometers have three basic components: a diffractive ele-

ment, focusing or collimating, and a detector or detectors array. Spectrum of light

can be realized by using optical filters [21, 22] and diffractive gratings [22–25]. The

applications of spectrometers are spread in many fields.

Bench top spectrometer have been used in many areas, i.e. dye industry, gems

industry, paint industry, chemistry and biology laboratory, defense, medicine, environ-

mental studies, and many other areas. Absorption spectrometry is used to determine

the presence of elements in chemicals which cannot be measured directly. Emission

spectrometry is used to record the spectrum of atoms and can be compared with
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absorption spectrum.

Infrared spectrometer finds applications in science, industry, and medicine.

Spectrometers that operates in ultraviolet-visible (UV - VIS) region with wavelengths

between 280 nm- 850 nm spectrum finds applications in colorimetry, fluorescence

based techniques, and atomic absorption spectroscopy. For the analysis of signals in

surface enhanced Raman spectroscopy (SERS) and surface Plasmon resonance (SPR)

spectroscopy, ultraviolet-visible spectrometers are quite helpful. Ultraviolet-visible

spectroscopy based instruments can make use of cost-effective and readily available

detectors and sources. Miniature or micro-spectrometer are required in many areas,

where moving a bench top spectrometer is not possible, i.e. space, marine study etc.

1.2.1 Microspectrometer

Microspectrometers can be used at places which were once limited to the labo-

ratory. In situ studies are required in many areas where collection and transportation

of the sample effect the result [26, 27]. Microspectrometer offers ability to conduct

research in field and avoid false result due to transportation. Microspectrometers are

being used on site for chemical analysis, blood analysis and for many other appli-

cations in biology and chemistry [28]. Microspectrometers have been developed for

ultraviolet-visible [21–25,29–31] , and infrared regions [32–34].

Based on their principle, microspectrometers can be classified as Fabry-Perot fil-

ter [21,31], acousto-optical tuneable filter (AOTF) [29,35], Fourier transform [30,32],

and grating- based [22–25, 33, 34] spectrometer etc. Fabry- Perot filter and Fourier

transform based micro-spectrometer contains movable part. The draw-backs in Fabry-

Perot filter based microspectrometer are: fabrication of mirror with appropriate flat-

ness and reflectivity, high voltage needed to tune the movable mirror, and to fabricate

two mirrors parallel to each other.
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(a) (b)

(c) (d)

Figure 1.1: Schematic view of the. (a) Fabry-Perot filter, (b) Fourier
transform, (c) Acousto-optical tuneable filter (AOTF), and (d) Grating
based microspectrometer.

The limitations of Fourier transform based microspectrometer is that it consists

of movable mirrors. Acousto-optical tunable filter (AOTF) based microspectrometer

doesn’t require any movable part and it consists of a crystal which acoustic waves

are used to separate a single wavelength of light. But acousto-optical tunable fil-

ter (AOTF) based microspectrometer works more as a monochromator rather than

spectrometer. A grating based microspectrometer doesn’t have any movable part

and works as a spectrometer. The performance of grating based microspectrome-

ter is directly related to the quality of grating and that can be achieved by careful

design of the grating. The grating based microspectrometer has an advantage over
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Fabry-Perot filter based, acousto-optical tunable filter (AOTF) based, and Fourier

transform based microspectrometer.

1.2.2 Diffractive Optical Element Based Microspectrometer

A diffractive optical element can perform spectral dispersion and focusing of

light. Diffractive optical element based microspectrometer provides quick read out

as compared to optical filter based microspectrometer. A diffractive optical element

works on the principle of diffraction. Primary wavefront interfere with secondary

wavefront and generate diffraction pattern. The grating act as a multiple silts, with

grooves arrangement on substrate. The density of grooves provides the approximate

calculation of spectral resolution. For example if the total number of grooves are

500 in a diffraction grating than it will provide 1 nm spectral resolution at 500 nm

wavelength.

A recent review on state of art optical spectrometer [22] states that larger size

of spectrometer provide good spectral resolution and smaller size of device provide

worse spectral resolution. But this is not the case today, with the development of

technology any desired size of grating can be realized. The best reported resolution

for microspectrometer of size 10 or 20 mm in visible range is from 5 nm to 10 nm for

both optical filters and diffractive optical element based design. Ref [23] demonstrate

a planar waveguide based microspectrometer with a focusing grating and gives 10 nm

resolution in visible range 350 nm - 650 nm. Ref [25] demonstrate a microspectrometer

based on planar reflection grating and gives 5 nm resolution in visible range 510 nm -

610 nm. Ref [30] is very compact but provides 6 nm spectral resolution in visible range

400 nm - 800 nm and ref [34] provides 0.07 nm spectral resolution but with a spectral

range of 14 nm. There is a trade off between size of spectrometer, spectral resolution,

and spectral range. As the size of spectrometer reduces, spectral resolution gets worse.
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Also, as the spectral resolution gets better, spectral range becomes smaller.

This is clear that there is need of microspectrometer with good resolution in

visible spectral range for many applications. We have proposed a novel design to

get better resolution in visible spectral range than the existing devices. Careful

designing of diffractive optical element will provide good spectral resolution in visible

spectral range. The primary result with diffractive optical element was shown by our

group [36,37]. In experiment, plain grating was used for diffraction and the focusing

of diffracted light was achieved by using plan - convex lens. The spectral resolution

was varied from 0.3 to 4.6 nm within the wavelength range of 472 nm - 666.0 nm.

To make it integrated microspectrometer further development was done by replacing

plan grating to chirped grating. The chirped grating provide diffraction and focusing

of diffracted light. With the help of chirped grating the output light is aimed and

focused at a distance from waveguide surface. Wavelength and order of guided mode

decides the location of focal point. Chirped grating based microspectrometers have

a edge over focusing and resolving, a range of wavelengths with the help of common

optical element.

The chirped waveguide grating was used in optical communications. The chirped

waveguide grating as a diffractive element in spectrometer was first studied by our

group. The design consists of chirped waveguide grating integrated into the single

mode planar waveguide. Chirped waveguide grating was fabricated on top of HfO2

film on quartz substrate and the design was done for spectral range from 425 nm

to 700 nm. The spectral resolution was 2 nm in spectral range between 424 nm

- 700 nm. Figure (1.2) shows schematic view of chirped waveguide grating based

microspectrometer.

The CMOS camera was used to record the image. To find out the full width

half maximum, matlab curve fitting toolbox was used to fit recored intensity. The
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Figure 1.2: Integrated chirped waveguide grating based micro-
spectrometer.

fabrication and experiment was done in collaboration with Spectrum Scientific Inc,

Irvine, California.

1.3 Enhanced Spontaneous Emission Near Waveguide

A quantum emitter such as an atom or a molecule undergoing spontaneous

transition from an excited to ground state emits light into available electromagnetic

modes. It has been recognized by Purcell [38] that spontaneous emission is not

only a property of the emitter but it is also strongly affected by the environment.

One of the processes of spontaneous emission is fluorescence, and the emitter is an

ion, atom or molecule. The emission from quantum emitter can be captured and

used as an optical sensor. Based on the optical structures, optical sensors can be

classified as total internal reflection fluorescence based sensors, optical ring resonator

based sensors, and optical waveguide based sensors etc. A total internal reflection

fluorescence based sensor [39] uses an evanescent wave to selectively illuminate and

excite atom or molecule in a restricted region of the specimen immediately adjacent

to the interface and the fluorescence was captured by the optical microscope.

Optical ring resonator based sensors [40, 41] are also based on total internal

reflection of light along curved boundary between ring and its surrounding. The
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guided mode spectral position is directly related to the effective refractive index(neff )

by λ = 2πrneff/m, where λ is resonant wavelength, r is the ring outer diameter and m

is an integer. The effective refractive index changes when a quantum emitter near to

the optical ring modifies the effective refractive index. The advantage of optical ring

resonator based sensors is sensing performance, while size of sensing area is much less

than the total internal reflection based sensors. Since the size of optical ring resonator

is near about 100 µm x 100 µm, so to deliver atom or molecule to the sensing area

micro-fluidic channel needs to be fabricated. The integration of optical ring resonator

and fluidics is very difficult.

Optical waveguide based sensors also works on total internal reflection and the

guided light in guiding layer goes under total internal reflection at guiding layer-

cladding interface. The evanescent wave at upper guiding layer-cladding interface

interact with analyte. In conventional waveguide, the lower cladding layer or substrate

has higher refractive index than upper cladding layer, thus the guided mode has less

intensity sitting in upper cladding layer and this effect the sensor performance.

Figure 1.3: Proposed design for optical waveguide based sensor.
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There is a need of a design, which will be compatible with fluidics. Micro-fluidic

channels will ease the sample injection and drainage. Also it will reduce the analyte

or sample consumption. The optical planar waveguide surface is very appropriate for

micro-fluidics channel fabrication. The integration of micro-fluidic channel and optical

waveguide will help to realize the lab-on-chip system and can be used out side the

lab, i.e. hospitals, clinics, and for on-site analysis. Figure (1.3) shows the proposed

design for optical waveguide based sensor with micro-fluidic channel. A thorough

investigation is needed for spontaneous emission from quantum emitter captured by

optical waveguide. Instead of analyte excited by evanescent wave, analyte was excited

by external source. The theoretical model was developed to estimate light captured

by waveguide.

If a quantum emitter placed near to the waveguide boundary, then decay can

occur in either of the following two ways: guided mode, and radiation mode. The

likelihood of these two ways is dependent on the particulars of the system [42, 43].

The expression of the rate of spontaneous emission could be in terms of the zero-point

fluctuations of the electromagnetic field at the atom’s location. The fluctuations of the

local zero-point field are dependent on the modes of electromagnetic field strengths as

well as the photon density of the states [44]. Since the modes of the electromagnetic

fields are highly dependent on the electromagnetic and configuration characteristics

of the materials, the rate of spontaneous emission could either be reduced or increased

and this depends on the electric characteristics of the environment of the atom [45,46].

Previous experimental studies have shown that when atoms are put in a cavity, the

rate of spontaneous emission is different when compared to the value in free space [47].

In general, when a dielectric waveguide is present, two dissimilar sorts of electro-

magnetic waves may be identified: (i) waves that have been trapped by the waveguide

and therefore restrained to its nearness and interior and is capable of propagating
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along its length; and (ii) waves, which at lengthy distances act as free waves. They

are altered because of the processes of scattering [46,48,49].

Urbach and Rikken [44] applied quantum electrodynamics in calculating the

zero-point fluctuations of the electromagnetic field. They also applied it in calculating

the spontaneous rate of emission from a dielectric non-absorbing film that had been

circumscribed by two non-absorbing dielectric half spaces. These half spaces were of

arbitrary refractive indices. For dielectric film in this experiment, the set of modes

comprised of radiation modes. The modes are evanescent in the two dielectric half

spaces.

In evaluation of spontaneous emission rate it is often assumed that the atoms or

molecules are randomly oriented in space. Both transverse electric (TE) and trans-

verse magnetic (TM) modes of the film then collect the radiation. In some rare cases

the assumption of random orientation may not be justifiable. The specific adsorption

relies on chemical bonds created between the chemical that functionalizes the sur-

face and particular radicals of the analyte molecules. This may lead to preferential

orientation of the adsorbed analyte molecules in space. For instance, long molecules

may all get attached to the surface by a certain end resulting in their orthogonal

orientation with respect to the surface. If the dipole matrix element of the transition

of interest happens to be orthogonal to the surface, then emitted radiation can only

be coupled to the TM modes of the film.

This case is interesting because the radiation into free space modes propagating

close to the normal to the surface is weak (an oscillating dipole does not radiate

along the dipole direction) leading to improved efficiency of collecting the radiation

into the guided mode. When evaluating the coupling efficiency, we consider the cases

of random orientation, dipole matrix element orthogonal to the surface, and dipole

matrix element random but parallel to the surface.
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CHAPTER 2

Characterization of Waveguide Prepared by Atomic Layer

Deposition of Alumina.

2.1 Fabrication of Al2O3 Waveguide

Finding a waveguide material for high index step has been a most crucial part

in integrated optics. As mention in chapter 1, high index step leads to strong confine-

ment. The strong confinement provides high degree of integration and allows sharp

bending of light. Al2O3 is perfect material for waveguide implementation due to its

high refractive index and transparency in large range of wavelength.

In our study, we had fabricated Al2O3 waveguide in collaboration with Dr. C.

Winter from Chemistry Department on silicon and soda lime glass substrate by atomic

layer deposition (ALD) technique. Al2O3 film is deposited by atomic layer deposition

(ALD) on soda lime glass and silicon substrate to form a film with thickness of 400

nm, 300 nm, and 200 nm. The substrate dimensions were approximately 39 mm x

25 mm. The optical properties of Al2O3 were investigated in spectral range of 400

nm - 1800 nm. The effective refractive index and propagation loss were measured at

wavelength 632.8 nm.

Al2O3 films were grown in a Picosun R-75 ALD reactor using trimethylaluminum

(TMA) and water [50]. The deposition temperature was 300 C and films with nominal

thicknesses of 400, 300, and 200 nm were grown with 4400, 3300, and 2200 deposition

cycles, respectively. Each cycle consisted of a 0.1 s TMA pulse, followed by a 3.0 s

nitrogen purge, a 0.1 s water pulse, and finally another 3.0 s nitrogen purge.

The surface roughness of the films were measured by atomic force microscope
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(a)

(b)

(c)

Figure 2.1: AFM images of (a) 400 nm, (b) 300 nm, and (c) 200 nm Al2O3

films.

(AFM). Figure (2.1a), (2.1b), (2.1c) shows the AFM images of 400 nm, 300 nm, and

200 nm. The scanned area under AFM was 500 nm x 500 nm. The surface roughness

was measured by selecting a line across the scanned area. For film thickness 400 nm,
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300 nm, and 200 nm, the surface roughness was ± 0.2 nm, ± 0.8 nm, and ± 0.3

nm, respectively. The surface roughness of Al2O3 by ALD is much better than Al2O3

deposited by sol gel [50] . Al2O3 film deposited by chemical vapor deposition(CVD)

have surface roughness of ±0.3 nm with film thickness of 56 nm [16]. The surface

roughness depends upon the film thickness and if film thickness is low surface rough-

ness is low and vice versa. In comparison to chemical vapor deposition, the surface

roughness is better in atomic layer deposition.

2.2 Optical Properties

The optical properties of Al2O3 film on soda lime glass and silicon substrate

were investigated by measuring the reflection spectra at ten different positions on the

sample in the spectral range from 400 nm to 1800 nm. Figure (2.2) shows the geom-

etry for calculation of reflection spectrum. The instrument used for this experiment

was computer controlled DigiKrom 240 monochromator and halogen lamp as a light

source. The incident angle and beam size were 5.60 and 0.5 mm, respectively. The

reflection spectrum of the film for TE polarization light is given by

Figure 2.2: Geometry for calculation of reflection spectrum of thin film.
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Rcalc =
(gc − gf )(gs + gf ) + (gc + gf )(gf − gs)exp(2jgfd)

(gc + gf )(gs + gf ) + (gc − gf )(gf − gs)exp(2jgfd)
, (2.1)

gc =
2π

λ
nccosθc, (2.2)

gf =
2π

λ
nfcosθf =

2π

λ

√
nf 2 − (ncsinθc)

2, (2.3)

gf =
2π

λ
nscosθs =

2π

λ

√
ns2 − (ncsinθc)

2, (2.4)

where nc, ns, and nf are cover, substrate, and film refractive index respectively. θc is

the incident angle, θf is the refraction angle in the film, θs is the refraction angle at

the film and substrate boundary, λ is the wavelength, and d is the film thickness

Since the measurement is done in such a wide spectral range (400 nm - 1800

nm) that there will be slow drift in the intensity of light source while spectrometer

is scanning across the wavelength. To account for intensity drift we have used first

order correction in calculated reflection spectrum

Rexp = Rcalc(C0 + C1λ), (2.5)

where C0 and C1 are adjustable parameter.

Matlab curve fitting toolbox was used for fitting. The experimentally measured

reflection spectrum was numerically fit to the calculated reflection spectrum, assuming

the Sellmeier formula for Al2O3 thin film on substrate. The mean-square differences

were minimized between experimental and calculated reflection spectrum angle of

incidence, substrate and cover refractive index at corresponding wavelength. The
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fitting parameters are Sellmeier coefficients forAl2O3, film thickness, C0, and C1.

Silicon substrate has higher refractive index compared to the Al2O3 thin film.

The minima of the reflection spectrum are clearly pronounced. The logarithm of

experimentally measured reflection spectrum was numerically fit to the logarithm of

calculated reflection spectrum. For soda lime glass sample the experimental measured

(a) (b)

(c)

Figure 2.3: Experimental and calculated reflection spectra for Al2O3 films
on silicon for thickness (a) 400 nm (b) 300 nm and (c) 200 nm.

reflection spectrum was numerically fit to the calculated reflection spectrum. Figure

(2.3) and (2.4) show the measured and fitted reflection spectra of 400 nm, 300 nm,
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and 200 nm thick Al2O3 film on silicon and soda lime glass substrate.

(a) (b)

(c)

Figure 2.4: Experimental and calculated reflection spectra for Al2O3 films
on soda lime glass for thickness (a) 400 nm (b) 300 nm and (c) 200 nm.

Equation (2.6) gives mean squared error (MSE) [10] and calculated by

MSE =
1

N

N∑
j=0

(
Rj
exp −R

j
calc

σj

)2

, (2.6)

where N is the total number of measurements and σj is the standard deviation of

measured data points.
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Tabel (2.1) provides MSE values for Al2O3 film on silicon and soda lime glass

substrate. Since there is strong anti-correlation between film refractive index and film

thickness, so we introduced scaling factor in refractive index and film thickness and

contour plot the MSE. The scaling factor introduces controlled error in film thickness

and film refractive index to calculate and contour plot. The contour plot for MSE

(a) (b)

(c)

Figure 2.5: MSE variation w.r.t. refractive index and thickness of Al2O3

film on silicon substrate (a) 400 nm, (b) 300 nm, and (c) 200 nm thick
film.

shows that error is minimum when both the scaling factor is unity and the nearest
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(a) (b)

(c)

Figure 2.6: MSE variation w.r.t. refractive index and thickness of Al2O3

film on soda lime glass substrate (a) 400 nm, (b) 300 nm, and (c) 200 nm
thick film.

contour to the minimum corresponds to the doubling the minimum MSE. Figure (2.5)

and (2.6) shows the contour plots with respect to the scaling factor in refractive index

and film thickness for 400 nm, 300 nm, and 200 nm thick Al2O3 film on silicon and

soda lime glass substrate.

The refractive index for Al2O3 was defined according to the Sellmeier- like dis-

persion formula
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Table 2.1: MSE value for Al2O3 films on silicon and soda lime glass sub-
strate.

Substrate 400 nm 300 nm 300 nm

Silicon 0.0008 0.0007 0.0125
Soda lime glass 0.0068 0.0118 0.0031

nf =

√
A0 +

A1λ2

λ2 − λ21
, (2.7)

where A0, A1, and λ1 are the Sellmeier coefficients and A0 account for the contribution

of short wavelength absorption to the refractive index at a longer wavelength, A1 and

λ1 are the relative oscillator strength and resonant wavelength, respectively. Table

2.2 shows the values of these coefficients for Al2O3 films on silicon and soda lime glass.

The refractive index of Al2O3 was calculated by taking average of sellmeier coefficients

for given substrate. Figure (2.7) shows the dispersion curves of the refractive index

Al2O3 film on soda lime glass and silicon substrate.

Table 2.2: Sellmeier coefficients for Al2O3 films.

Substrate Film Thickness (nm) A0 A1 λ1

400 1.31283 1.29987 120.634
Silicon 300 1.30451 1.33178 120.0863

200 1.15965 1.50157 130.091
400 1.39185 1.38324 133.829

Soda lime glass 300 1.46200 1.25589 149.167
200 1.42479 1.32544 100.001

The refractive index ofAl2O3 film on silicon and soda lime substrate has different

values. The optical properties of thin films deposited by atomic layer deposition are

depend on the substrate [14] and is confirmed by our results too. Our results are in

good agreement with those of Raisanen et al. [15] and Ott et al. [16] and higher than

the Kim et al. [14]. The reflection spectrum were measured at ten different points and
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Figure 2.7: Refractive index of Al2O3 thin film on silicon and soda lime
glass substrate.

thickness of the film was calculated by fitting measured reflection spectrum. Table

2.3 shows the range of film thickness, mean film thickness and the standard deviation

in film thickness.

The result shows the uniformity in film thickness over entire substrate. Figure

(2.8) shows the thickness of Al2O3 film on silicon and soda lime glass substrate.

Table 2.3: Range of film thickness, mean thickness, and standard devia-
tion.

Experimental Range of Mean Standard
Substrate thickness film thickness deviation

(nm) thickness(nm) (nm) (nm)
400 419-409 413.15 3.00

Silicon 300 304-312 307.61 2.22
200 199-205 202.60 1.43
400 380-402 392.27 6.95

Soda lime glass 300 290-303 297.85 3.58
200 180-193 184.08 5.25
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2.3 Waveguide Properties

The waveguide properties were investigated for 400 nm, 300nm, and 200 nm

thick Al2O3 film on soda lime glass. Since Al2O3 film on glass substrate behaves like

a slab waveguide, the dispersion relation for slab waveguide for TE polarized light is

given by

mπ =
2π

λ
d
√
nf 2 − neff 2−tan−1

(√
neff 2 − nc2
nf 2 − neff 2

)
−tan−1

(√
neff 2 − ns2
nf 2 − neff 2

)
, (2.8)

The dispersion relation for slab waveguide for TM polarized light is given by

mπ =
2π

λ
d
√
nf 2 − neff 2−tan−1

(
nf

2

nc2

√
neff 2 − nc2
nf 2 − neff 2

)
−tan−1

(
nf

2

ns2

√
neff 2 − ns2
nf 2 − neff 2

)
,

(2.9)

where nc, ns, and nf are refractive index for cover, substrate, and film, neff is the

effective refractive index for mth guided mode (m is the order of mode, m= 0,1,2...),

λ is the wavelength, and d is the thickness of the film. Guided modes in a dielectric

waveguide may exist when

max(nc, ns) ≤ nf (2.10)

For calculating the number of guided modes that can be supported by an Al2O3 film

on glass substrate for a particular wavelength is given by

neff = ns (2.11)

MTE = b2
λ
d
√
nf 2 − ns2 − tan−1

(√
ns2 − nc2
nf 2 − ns2

)
c, (2.12)

MTM = b2
λ
d
√
nf 2 − ns2 − tan−1

(
nf

2

nc2

√
ns2 − nc2
nf 2 − ns2

)
c, (2.13)
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where MTE and MTM is number of guided modes for TE and TM polarized light

respectively. Where bxc denotes the largest integer that is smaller than or equal to

x. The equation (2.12 ) can be solved numerically for neff for given guided modes m

(= 0 to MTE ). Similarly the equation (2.13 ) can be solved numerically for neff for

given guided modes m (= 0 to MTM). Wavelength 632.8 nm were used for calculating

the effective refractive index for Al2O3 film on glass substrate. Effective refractive

index is calculated for 400 nm, 300 nm, and 200 nm Al2O3 film on soda lime glass

substrate. The film refractive index and thickness of the film were taken from the

fitting results. There was one TE- fundamental mode and one TM-fundamental mode

for 400 nm and 300 nm thick Al2O3 on soda lime glass glass substrate. 200 nm thick

Al2O3 film on soda lime glass film support only one TE- fundamental mode and act as

a single mode planar waveguide. Figure (2.9) shows the geometry used for calculation

of effective refractive index (neff ).

To measure the effective refractive index, prism coupling method was used. The

effective refractive index is defined as

neff = npsin

(
β + sin−1

(
sinθm
np

))
, (2.14)

where np is the refractive index of the prism at particular wavelength, β is the prism

angle, and θm is the angle at which guide mode is excited.

In experiment we have used a He- Ne laser emitting at 632.8 nm. The prism

angle is 60.19 degree and the refractive index of the prism is 1.7520. Table 2.4 shows

the calculated and experimental measured effective refractive index for 400 nm thick

Al2O3 film on soda lime glass. Figure (2.11) shows the guided modes for 400 nm and

300 nm thick Al2O3 film on soda lime glass.

For loss measurement, the light is collected by multi-mode fiber from the film
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Table 2.4: Experimental and calculated effective refractive index for 400
nm thick Al2O3 film on soda lime glass at 632.8 nm wavelength.

Effective refractive Index
Experimental Calculated

Film Thickness(nm) TE-Pol TM-Pol TE-Pol TM-Pol
400 1.5765 1.5614 1.5909 1.5745
300 1.5474 1.5289 1.5688 1.5453
200 1.5159 - 1.5264 -

surface along the light track. The intensity of the guided mode was measured as a

function of the distance. The intensity profile in waveguide are defined as

I = I0exp(−αx), (2.15)

Where α is losses in waveguide. Losses in dB/cm is defined as

αdB =
10

L
log10(α), (2.16)

where L is length in cm traveled by guided mode in the waveguide. Figure (2.12)

shows the losses inside the waveguide as a function of distance in millimeters. The

slope of intensity curves correspond to the losses in range of 7 dB/cm.

The simple analytical model proposed by Payen et. al. [52] shows that propa-

gation loss α is defined as:

α = 0.76
λσ2

2π(d/2)4nf
, (2.17)

where σ is the surface roughness, λ is the wavelength, d is the film thickness, and nf

is the film refractive index. The surface roughness (σ) is ± 0.3, and film refractive

index is 1.68 at 632.8 nm wavelength. The average theoretical propagation losses for

our samples is 0.75 dB/cm. The experimental propagation losses is higher than the

analytical propagation losses. This is because of the contribution of volume scattering
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or porosity in the film.

The propagation losses and refractive index reported by Smit et al. [53] was

25 dB/cm and 1.54 at 633 nm wavelength by r.f. sputtering process and after an

annealing process at 800oC, the refractive index of their alumina film increased from

1.54 to 1.70. The propagation loss decreased from 25 dB/cm to about 1 dB/cm. By

ion-beam sputtering [54], the reported propagation loss before annealing at 633 nm

was 0.4 - 2.9 dB/cm and after annealing was 0.23 dB/cm. By pulsed laser deposition,

the propagation losses at 633 nm was 10 dB/cm [55]. As discussed above, either

the propagation losses are too high or it requires high temperature to get good film

[56]. But by ALD technique, the propagation loss was 7 dB/cm at 300oC deposition

temperature without any extra step.

2.4 Conclusion

Al2O3 was used in integrated optics and usually deposited by PECVD, sputter-

ing, and evaporation technique. To achieve high index step Al2O3 with low propaga-

tion losses, either deposition is needed to be done on high temperature or annealed

at high temperature. On other hand, ALD provides smooth surface with high step

index and low propagation losses.

In our study, we showed that Al2O3 deposited by atomic layer deposition tech-

nique have surface roughness of ± 0.3 nm with propagation loss of 7 dB/cm. The

optical properties were calculated by fitting measured reflection spectrum to the cal-

culated reflection spectrum. The quality of fit was investigated by calculating mean

squared error. The refractive index of Al2O3 was approx. 1.63 and 1.68 at 632 nm

wavelength on silicon, and soda lime glass substrate, respectively. The mean squared

error was 0.0008 and 0.0068 for silicon and soda lime glass substrate, respectively.
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(a)

(b)

Figure 2.8: Film thickness of Al2O3 on (a) silicon and (b) soda lime glass
substrate.
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Figure 2.9: Geometry for calculation of effective refractive index by prism
coupling method.

Figure 2.10: Schematic diagram of experiment.
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(a)

(b)

Figure 2.11: Guided modes excitation for Al2O3 film on soda lime glass for
(a) 400 nm, (b) 300 nm thick film.



www.manaraa.com

30

Figure 2.12: Propagation loss for Al2O3 film on soda lime glass for 400 nm,
300 nm, and 200 nm thick film at 632.8 nm wavelength.
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CHAPTER 3

Waveguide Based Microspectrometer With a Computer

Generated Diffractive Optical Element.

3.1 Waveguide Design

Waveguide is the basis of integrated optics and communication channel. As

mentioned in chapter 1, waveguide with high index step provides high confinement and

can be used in an integrated optical circuits that substitute micro-electronics circuit.

The optical waveguide guide the light by total internal reflection at its interface.

Optical waveguide is a basis of microspectrometer.

The planar waveguide can be characterized by the film refractive index (nf ),

substrate refractive index (ns), cover refractive index (nc), and film thickness (d). The

relationship between these parameters for TE polarized light is given by equation 3.1

d =
λ

2π
√
nf 2 − neff 2

(
mπ + tan−1

(√
neff 2 − nc2
nf 2 − neff 2

)
+ tan−1

(√
neff 2 − ns2
nf 2 − neff 2

))
,

(3.1)

where neff is the effective refractive index for mth guided mode (m is the order of

mode, m = 0, 1, 2...), λ is the wavelength. Single mode optical waveguide is preferred

over multi mode waveguide, since angle of diffraction depends upon the effective

refractive index and single mode planar waveguide provides one focus per wavelength.

The high index step material is desirable to get strong evanescent field. As

mentioned in chapter 1, HfO2 has high refractive index (≈ 2) and physically strong

material. To calculate thickness of HfO2, we need to solve equation 3.1. For spectral
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range 425 nm to 700 nm, 200 nm thick HfO2 will support one fundamental TE mode

and one fundamental TM mode.

3.2 Design of Chirped Waveguide Grating

The design of microspectrometer revolves around diffractive element, collima-

tion or focusing, and detection. In our design, chirped waveguide grating (CWG) was

used as diffractive element and focusing. For delivering light to the chirped waveguide

grating, planar waveguide has been used. Since angle of diffraction depends upon the

effective refractive index, single mode planar waveguide has been used to get one

focus per wavelength. For detection, regular CMOS camera was used.

Figure 3.1: The proposed design of microspectrometer.

The design of chirped waveguide grating starts from choice of the center wave-

length. Center wavelength (λ0) is defined as a wavelength which is focused above

at the center of grating. The grating period (Λ0) at the center of grating can be

calculated as:

Λ0 =
λ0

neff (λ0)
(3.2)
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Dimensions of the chirped waveguide grating plays crucial role in defining the

spot size of the focused beam. The determination of size of chirped waveguide grating

depends upon the coupling strength and depth of grating [57, 58]. The out-coupled

power from the chirped waveguide decreases as it travels along chirped waveguide

grating area. Depth of chirped waveguide grating gives the choice to cover whole

area of chirped waveguide grating. In order to provide optimal functionality from

chirped waveguide grating, we have to optimize length and depth of chirped waveguide

grating. Figure (3.2) shows relationship between the length and depth of chirped

waveguide grating.

Figure 3.2: Relationship between the length and depth of chirped waveg-
uide grating.

Once we select the central wavelength and size of chirped waveguide grating,

we can design the two dimensional groove of chirped waveguide grating. Figure (3.3)

shows two dimensional groove of chirped waveguide grating and the curves shows

the peak of each groove. The location of peak of each grove can be calculated by

estimating total phase (φ) accumulated as light travels from source O to the grating
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P (x, y) and focus F above at the center of grating. The total phase (φ) accumulated

form O to F is equal to integer multiple of 2π [36].

Figure 3.3: Ray diagram of chirped waveguide grating.

φ =
2π

λ0
neff

√
(D + x)2 + y2 +

2π

λ0
na
√
x2 + y2 +H2 (3.3)

where φ is total phase accumulated for each path from O to F, λ0 is center wavelength,

neff is the effective refractive index at center wavelength, D is the distance from the

source point of center of the grating, H is the distance of focal point from center of

the grating, x and y define the location of the pixel, and center of chirped waveguide

grating is at the origin (0,0).

For other wavelengths the position of the focal point can be approximated using

geometrical considerations. The locations of the focal points for different wavelengths

will lie along a curved line. For each waveguide mode this curve will be different

because the effective refractive index will be different for each mode. Therefore, a
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single mode waveguide is required to get one focal point per wavelength. The focal

points for each wavelength can be calculated by considering that the small change

in distance along the chirped waveguide grating (in say + X-direction) gives a small

change in diffraction angle.

sin(θ) =
1

na

(
neff −

λ

Λ0

)
(3.4)

a0 =
d

dx

[
1

Λ(x)

]
x=0

(3.5)

x(λ) =
nasin(θ)cos3(θ)

λa0
(3.6)

z(λ) =
nacos

3(θ)

λa0
(3.7)

where λ is the wavelength, neff is the effective refractive index, na is the refractive

index of the air, θ is the diffracted angle measured with respect to the waveguide

plane, Λ0 is grating period at x = 0, and Λ(x) is the period of the chirped waveguide

grating at x.

Figure (3.4) shows the resulting focal curve for wavelengths from 425 nm to

700 nm, with a 480 nm center wavelength. The origin is at the center of chirped

waveguide grating, the position of the focal spot for the center wavelength is 5 mm

above the chirped waveguide grating (along the z-axis), and the distance from the

source to the center of chirped waveguide grating is 5 mm (along the x-axis).

The design was carried out for visible range and the center wavelength was 480

nm and the dimensions of the chirped waveguide grating was 250 µm x 250 µm. The

source point was taken 5 mm and focal point was taken at 5 mm, the refractive index

of the HfO2 film was 1.7211 at 480 nm wavelength. Figure (3.5) shows the chirped

waveguide grating layout transfer from Matlab to LASI.
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Figure 3.4: The resulting focal curve for 425 nm to 700 nm with λ0 = 480
nm.

Figure 3.5: The chirped waveguide grating layout transfer from Matlab to
LASI.

By calculation the chirped waveguide grating’s period was approximately 300

nm at the beginning and decreases as we move away from the source point, but for
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particular period the duty cycle was 50%. For E-beam lithography, the L-edit was

used to create GDSII file. The calculated diffraction spot size for 250 µm chirped

waveguide grating length is 2.09 µm. Figure (3.6) shows the chirped waveguide grating

layout for E-beam lithography in L-edit with markers.

Figure 3.6: The chirped waveguide grating in Ledit.

For designing chirped waveguide gratings, Matlab was used for simulation to

make text file. Generated text file was then transferred to the LASI software to make

GDSII file. Ledit was used to put together chirped waveguide grating and marker for

ebeam lithography.

3.3 Fabrication of Chirped Waveguide Grating

The fabrication was done in Nanofabrication laboratory at Penn State Univer-

sity. Chirped waveguide gratings were fabricated on fused quartz substrates. The

waveguide core was formed by depositing a 200 nm thin film of HfO2 onto the sub-

strate using atomic layer deposition (ALD). The fabrication procedure on HfO2 of

the chirped waveguide grating is described below.

The step involved in ebeam lithography are as follow
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1. Cleaning samples

2. SiO2 deposition

3. O2 plasma etching

4. Ebeam resist spin coating

5. Soft baking

6. Gold deposition

7. Ebeam writing & design

8. Gold etching & Developing

9. SiO2 etching

10. Removal of ebeam resist

The sample dimension was 12 mm x 12 mm. Figure (3.7) shows the graphical illus-

tration of ebeam lithography process.

3.3.1 Cleaning Samples

The first step in nano fabrication is to clean sample as much as possible. Even

if we can not see the dust particle by eyes, at nano scale it will contributes in scat-

tering losses. We had removed dust particles by using pressurized clean N2. Then

the samples were cleaned for half an hour by acetone using ultra-sonics followed by

cleaning by isopropanol for half an hour using ultra-sonic bath.
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Figure 3.7: Graphical illustration of ebeam lithography process.

3.3.2 SiO2 Deposition

A 75 nm SiO2 cladding layer was deposited using plasma enhanced chemical

vapor deposition (PECVD). The SiO2 deposition was done with an Applied Material

P-5000 PECVD Cluster tool. The deposition was for 35 seconds at 300oC and the

gas flow rate for the N2O was 840 sccm, for the SiH4 it was 20 sccm, and for the N2

it was 1400 sccm.
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3.3.3 O2 Plasma Etching

To improve adhesion, the samples were cleaned by Nano-strip and then by O2

plasma. A Metroline M4L Plasma Etcher tool was used for 2 minutes for O2 plasma

cleaning. The gas flow rate was 150 sccm for the O2 and 50 sccm for the He. The

power used was 300 W.

3.3.4 Ebeam Resist Spin Coating

A programmable spinner was used to spin ebeam resist onto the samples. An

adjustable vacuum chuck hold the samples inside spinner. To get desired thickness,

we need to optimize time and rpm of spinner. ZEP 520/Anisole (1:1), a positive

resist, was used for electron beam lithography resist and we have used 2500 rpm for

1 min.

3.3.5 Soft Baking

After spinning the resist on samples, the samples were soft baked at 180oC for

3 minutes to remove residuals. The thickness of ebeam resist was around 215 nm,

measured by profilometer.

3.3.6 Gold Deposition

Since the samples were on quartz substrates, 10 nm gold films were deposited

by Kurt Lesker Thermal Evaporator in order to avoid surface charging during ebeam

lithography. The deposition rate was 0.5 ± 0.1 A/sec and the deposition time was 3

min. We got 9 nm ± 1 nm of gold on top of ebeam resist.
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3.3.7 Ebeam Writing & Design

A Leica EBPG5-HR Electron Beam Writer was used to write chirped waveg-

uide grating pattern into the resist. The ebeam lithography process was an iterative

process and it needs to be optimize for our application. For example, in ebeam lithog-

raphy, the exposure dose, thickness of ebeam resist and time are important parameter.

To optimize the dose for our sample a dose array matrix was written on quartz sample

Figure 3.8: Optical microscope image of dose array matrix.

after all previous step.

The dose varies from 150 µc/cm2 to 290 µc/cm2 with step of 10 µc/cm2. Figure

(3.8) shows optical microscope image of the dose array matrix for quartz sample. 160

µc/cm2 dose was chosen for ebeam lithography and two gratings from dose matrix

array have been selected for illustration.

Figure (3.9a) and (3.9b) shows optical microscope image of individual grating

from dose array matrix for 160 µc/cm2 and 290 µc/cm2 dose. From figures it is clear

that at dose 160 µc/cm2 grating is good and at dose 290 µc/cm2 grating was over

developed. Figure (3.10a) and (3.10b) shows scanning electron microscope (SEM)
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(a)

(b)

Figure 3.9: Optical microscope image of individual grating from dose array
matrix.(a) dose 160 µc/cm2 and (b) dose 290 µc/cm2.

image of individual grating from dose array matrix for 160 µc/cm2 and 290 µc/cm2

dose.

Figure (3.9b) and (3.10b) shows the fail fabrication of chirped waveguide grating.

The exposure dose and ebeam resist thickness for this step was 290 µc/cm2 and 215

nm. To avoid this kind of failure, either we need to reduce the expousre dose or
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(a)

(b)

Figure 3.10: Scanning electrom microscope (SEM) image of individual
grating from dose array matrix.(a) dose 160 µc/cm2 and (b) dose 290
µc/cm2.

increase the ebeam resist thickness.
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3.3.8 Gold Etching and Developing

After e-beam writing, the gold film was etched away by a gold etch-type TFA

chemical for 30 seconds. The e-beam resist was developed by n-amyl acetate for 3

minutes, the development process was stopped by immersion in MIBK/IPA (8:1) for

30 seconds, and the samples were rinsed with IPA for 30 seconds. Figure (3.11) shows

optical microscope image of chirped waveguide grating with markers.

Figure 3.11: The chirped waveguide grating after development with mark-
ers.

3.3.9 SiO2 Etching

An Applied Materials AMAT MARIE was used to etch the pattern into the SiO2

cladding layer. The etching was done for 180 seconds. The ZEP 520 was striped by

using n, n-dimethylactamide for 5 minutes. A Leo 1530 FE-SEM was used to take

images of the gratings.
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3.4 Experiment and Results

The experiment was done to check the functionality of micro-spectrometer.

Light from semi-conductor laser and Ar+ -ion laser was combined using beam split-

ters. A microscope objective was used to focus the light at point O and the distance

between the source point at O and center of grating was 5 mm. The diverging light

from point O is focused by the grating onto the image sensor. The intensity was at-

tenuated to avoid the sensor saturation. Figure (3.12) shows the schematic diagram

of our experiment. The wavelengths of the light from two laser sources were 458 nm,

and 532.8 nm.

Figure 3.12: Schematic diagram of experiment.

The image of the focused beams was recorded by a CMOS sensor from Pixel

link. The pixel size of the sensor array is 6.7 µm x 6.7 µm, frame rate is 25 fps,

and the sensing area is 8.6 mm x 6.9 mm. The CMOS sensor was mounted on 3D

translation stage and adjusted to bring the light from the 458 nm source into sharp

focus on the detector.

Light of wavelength 458 nm was focused at above in the center of the grating

and 532.8 nm wavelength light was focused next to right side of 458 nm wavelength

as shown in Figure (3.13). Light of wavelength 458 nm gives sharp focus, as CMOS

sensor was placed at its focal plan. For 532.8 nm wavelength light, the image was
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Figure 3.13: Image Recorded by CMOS image sensor.

captured before the focus.

Figure 3.14: The Intensity distribution along a line through the focus light
row of pixel.

Figure(3.14) shows the intensity distribution along a line through the focus

light row of pixel. The focus points were 2-3 pixels wide at full width half maximum

level. The position of peak and full width half maximum was calculated by applying

gaussian fit. Figure(3.14) also shows fit intensity distribution.
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Figure 3.15: The Intensity distribution in wavelength range.

The intensity distribution with respect to pixel was changed to the wavelength

range by linear approximation. The slope of the line was calculated by assigning

the wavelength to the position of peak. The full width half maximum for 458 nm

and 532.8 nm were 2 nm and 3 nm, respectively. Figure(3.15) shows the intensity

distribution in wavelength range.

3.5 Conclusions

The combination of free space geometry ( micro - optics) has resulted in a

compact microspectrometer. This is worth mentioning that the micro-spectrometer

size is 12 mm x 12 mm with quick read out property and provide 2.5 nm resolution.

Most of the microspectrometers have size in inches with resolution less than 5 nm

and if the size is small , resolution is more than 6 nm. As mentioned in Avrutsky et.

al. [36], the main draw back of the plan grating and lens based micro-spectrometer

is the lens astigmatism of the out coupled radiation. Also device provides 0.3 nm

to 4.6 nm of variable resolution with respect to above mention device. The above
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microspectrometer is integrated on planar waveguide base and doesn’t require any

optical scheme for focusing.

Since microspectrometer provides real time spectrum, it is best candidate for

in-situ measurement. The planar waveguide base makes it robust and well suited

for lab-on-chip application. The compatibility with CMOS technology makes it more

flexible to fabricate.
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CHAPTER 4

Enhanced Spontaneous Emission Near Waveguide

4.1 Introduction

The implication of the environment affecting the spontaneous emission is that

the rate of emission could be suppressed if the atoms are placed in a cavity [59–62] or

in a photonic crystal [63] with no modes available at the transition frequency. Alter-

natively, if the environment provides higher density of states of electromagnetic field

compared to that in vacuum, the spontaneous decay becomes faster. The emission

rate is relatively easy measured by monitoring lifetime of luminescence excited by

short laser pulses, and this aspect of environment-dependent spontaneous emission

has been studies extensively [59–67].

Another important aspect is how the emitted radiation is distributed among

the available radiation modes. It is implicitly presented in calculations of the spon-

taneous emission rate as long as the total rate is the sum of emission rates into

particular modes. This aspect, however, has not been studies as comprehensively,

perhaps, because of its experimental verification is not straightforward. From practi-

cal perspective, if the emission is collected using some specific electromagnetic modes,

the efficiency of spontaneous emission coupling to these modes becomes an important

factor in deciding the performance of the system under investigation. In particular,

on-chip integrated microsystems may use optical waveguides to transmit the emission

from the substance being analyzed to the spectral sensor. If emission directed into

the guided modes is efficient enough, it eliminates necessity for additional optical

elements such as mirrors and micro-lenses designed for collecting light radiated into
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free space and coupling it to the waveguide.

It has been found that a high-index waveguide film provides additional radia-

tive channels and thus enhances the emission rate. In this study we are specifically

interested in the efficiency of the process, namely, the percentage of spontaneously

emitted radiation power that is captured by the guided modes. To be close to a

practically important configuration, we presume that liquid analyte is flowing in a

microfluidic channel right above a planar waveguide. The surface of the waveguide

is functionalized to specifically adsorb the molecules of interest, which then produces

fluorescence, being excited by external radiation (Fig. 1). The adsorbed molecules

are then placed in close proximity to the waveguide surface. The medium above the

guiding film in this case is mainly water or alcohol or other solvents that delivers the

analyte. It is also possible that the liquid is removed from the channel, so that the

top medium is filled with air.

Figure 4.1: Illustration of the quantum emitter near waveguide.
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4.2 Theoretical Formalism

if an atom is sitting on top of a film at distance z, the spontaneous emission

rate W is given by

W =
2πe2

h̄2c
|D12|2F (z), (4.1)

where h̄ is the plank constant, c is the speed of light in vacuum, e is the electron charge,

D12 is the dipole matrix element of the atomic transition, and F (z) = (F x(z)+F y(z)+

F z(z))/3 is the zero-point electromagnetic field fluctuation for random orientation of

the atomic dipole moment, where F j(j = x, y, z) is jth component of zero-point

electromagnetic field fluctuation. Here, the dipole matrix element is assumed to have

no preferential orientation. Figure 4.2 shows the quantum emitter (an atom or a

molecule) at distance z from waveguide surface.

Figure 4.2: The general View of an atom or a molecule at distance z from
waveguide surface.

For this system the zero-point electromagnetic field fluctuation can be written

as sum of the contribution in radiation modes FR
j(z) and guided modes FG

j(z) and
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can be calculate by

FR
j(z) =

∑
p=TE,TM

Cover∑
µ=Sub

∫ 2π

0

∫ k0nµ

0

h̄ω0

2ε0
|Ej

kpµ(~r)|2βdβdφ, (4.2)

FG
j(z) =

∑
p=TE,TM

∑
ν≥1

kp,minν <k0

∫ 2π

0

h̄ω0

2ε0
|Ej

kpν(~r)|
2βpν(

~k0)
dβpν
dk

(k0)dφ, (4.3)

where ε0 is the permitivitty in vacuum; k0 = ω0/c is the wave number of the emission

light in vacuum; E(~r) is the electric field at the position of quatum emitter for various

modes. TE (TM) indicates the TE (TM) polarization, whose electric (magnetic) field

vector is parallel to (x,y) plane; k = (βcos(φ), βsin(φ), kµz), kµz =
√

(k20n
2
µ − β2), µ

represent the substrate and cover surface; ν represent the number of guided modes. If

quantum emitter is sitting in a homogeneous dielectric medium with refractive index

n, then the components of the zero-point electromagnetic field fluctuation will be

F x = F y = F z = nFfree, (4.4)

Ffree =
h̄ω0

3

6π2ε0c2
, (4.5)

where ω0 is the angular frequency of spontaneous emission, and ε0 is the permittivity

of the vacuum. Since the relative spontaneous emission rate W/Wfree is equal to the

normalized zero-point electromagnetic field fluctuation F/Ffree, so to simplify we will

follow normalized zero-point electromagnetic field fluctuation, where W and Wfree

are the atomic spontaneous emission rates in medium and in vacuum, respectively, F

and Ffree are zero-point electromagnetic field fluctuation in medium and in vacuum,

respectively
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The coupling efficiency η(z) can be calculated as a ratio of normalized zero-point

electromagnetic field fluctuation of total guided modes FG(z) to the total normalized

zero-point electromagnetic field fluctuation F (z). Equation (4.6) and (4.7) give to-

tal normalized zero-point electromagnetic field fluctuation and coupling efficiency,

respectively.

FG(z) =
1

3

∑
j=x,y,z

FG
j(z) (4.6)

F (z) =
1

3

∑
j=x,y,z

FG
j(z) + FR

j(z) (4.7)

η(z) =
FG(z)

F (z)
(4.8)

4.3 Dependence of coupling efficiency on the refractive index

of the film

Using the above model we have studied how efficiency of coupling to the guided

modes depend upon the film thickness and refractive index. The substrate and

cover refractive index (ns and nc respectively) are assumed to be 1.0; film refrac-

tive index(nf ) is varied from 1.01 to 2.5, and film thickness is equal to 0.1λ and

1λ, where λ is the emission wavelength. For thickness t = 0.1λ waveguide support

only one TE mode and one TM mode for refractive index from 1.01 to 2.5. For film

thickness 1λ waveguide support three TE and TM modes, when film refractive index

is 1.5, and five TE and TM modes, when the film refractive index is 2.5. The cou-

pling efficiency depends upon film refractive index and thickness of the film. For 0.1λ

thick waveguide, as film refractive index increases, the coupling efficiency increases

as the film refractive index increases. As the film thickness increases from 0.1λ to 1λ,

the coupling efficiency increases. By varying refractive index, the number of modes

increases and so the coupling efficiency.
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(a)

(b)

Figure 4.3: The normalized zero-point field fluctuation as a function of
film refractive index.(a) Guided Mode and (b) Radiation Mode.

Figure (4.3a), (4.3b) shows the zero-point field fluctuation for guided mode

and radiation mode as a function of film refractive index, the emission wavelength is

assumed to be 530 nm. The two film thicknesses are 53.0 nm, and 530 nm. Figure

(4.3a) shows, as a new mode introduced the zero-point field fluctuation increases and

then it becomes constant. Figure (4.4) shows the coupling efficiency as a function of
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film refractive index. As the refractive index of thin film is increased, the coupling

efficiency increases. Our calculation is in good agreement with Urbach et. al [44].

MTE and MTM represents number of modes for TE and TM polarization respectively.

Figure 4.4: The coupling efficiency as a fuction of film refractive index.

From geometric optics point of view, if we have assumed that the atom is sitting

inside the waveguide, then the coupling efficiency depends upon the critical angle

between the film and the substrate and given by η =
√

nf 2−ns2
nf 2

. Figure (4.5) shows

the coupling efficiency of an excited atom by assuming the radiation is isotropic in

space, and the film captures all the rays approaching the interfaces at angles exceeding

the critical angle for total internal reflection. The difference between the above model

and geometrical optics calculation arises because the light inside the waveguide is

carried by guiding modes, not by rays.
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Figure 4.5: The coupling efficiency as a function of film refractive index.

4.4 Dependence of coupling efficiency on the location of the

emitter

The above model is applied for Al2O3, and silicon nitride (SiN) thin film on

soda lime glass. The emission wavelength is 530 nm, the thickness of thin film is 0.4λ.

The coupling efficiency increase as it approaches the waveguide boundary. If atom

is placed on the surface of waveguide, the coupling efficiency is approximately 0.30

for Al2O3, and SiN thin film on soda lime glass respectively. Since most of the dye

dissolve in alcohol, the two configuration are taken into account for cover: air and

alcohol. Figure (4.6), and (4.7) shows coupling efficiency as a function of 2z/t for

air/Al2O3, alcohol/Al2O3, air/SiN , and alcohol/SiN on soda lime glass respectively.

The thin film thickness is 212.0 nm. As shown in graph the efficiency increases as

the atom approaches to the waveguide surface and goes down to zero within 1.33 um

of distance from surface of waveguide. Thus if an fluorescent molecules are absorbed

at the surface of the waveguide, the significant amount of light will be captured

by waveguide. The standalone silicon membrane performs same way, provided that
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Figure 4.6: The coupling efficiency as a function of 2z/t for air/Al2O3 and
alcohol/Al2O3 on soda lime glass.

Figure 4.7: The coupling efficiency as a function of 2z/t for air/SiN and
alcohol/SiN on soda lime glass.

emission takes place in infrared region. The efficiency of light collection by silicon

membrane approaches 0.90. The emission wavelength is 1550 nm, the refractive index

of cladding is considered as 1, refractive index of silicon membrane is considered 3.47,

and the membrane thickness is 310 nm. Figure (4.8) shows the coupling efficiency as a
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Figure 4.8: The coupling efficiency as a function of 2z/t of air/silicon
membrane and alcohol/silicon membrane.

function of 2z/t for air/silicon membrane, and alcohol/silicon membrane respectively.

4.5 Dependence of coupling efficiency on Dipole element ma-

trix of an atom

The coupling efficiency also depends upon the orientation of a dipole matrix

element. The most interesting case is when an atoms have dipole matrix element

orthogonal to the surface of a waveguide. In this case radiation happens along waveg-

uide surface and there is no radiation along dipole element matrix or perpendicular

to the waveguide surface. The coupling efficiency of such system is given by

ηz(z) =
F z

G(z)

F z
G(z) + F z

R(z)
, (4.9)

where F z
G(z) and F z

R(z) represents zero-point field fluctuation of guided modes and

radiation modes, respectively, if dipole element matrix is orthogonal to surface of

waveguide. Since we have only TM modes, the electric field components are dis-
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continued at the waveguide surface due to boundary condition and we observe a

jump in zero-point field fluctuation of guide mode if an atom is at the surface of

a waveguide. Figure (4.9a), and (4.9b) shows normalized zero-point field fluctua-

(a)

(b)

Figure 4.9: The normalized zero field fluctuation of guide modes as a func-
tion of 2z/t. (a) air/Al2O3 and alcohol/Al2O3 (b) air/SiN and alcohol/SiN
on soda lime glass.

tion of guided modes as a function of 2z/t for air/Al2O3, alcohol/Al2O3, air/SiN ,
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and alcohol/SiN on soda lime glass respectively. Figure (4.10a), and (4.10b) shows

normalized zero-point field fluctuation of radiation modes as a function of 2z/t for

air/Al2O3, alcohol/Al2O3, air/SiN , and alcohol/SiN on soda lime glass respectively.

(a)

(b)

Figure 4.10: The normalized zero-point field fluctuation of radiation modes
as a function of 2z/t. (a) air/Al2O3 and alcohol/Al2O3 (b) air/SiN and
alcohol/SiN on soda lime glass.
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(a)

(b)

Figure 4.11: The coupling efficiency as a function of 2z/t. (a) air/Al2O3

and alcohol/Al2O3 (b) air/SiN and alcohol/SiN on soda lime glass.

Figure (4.11a), and (4.11b) shows coupling efficiency as a function of 2z/t for

air/Al2O3, alcohol/Al2O3, air/SiN , and alcohol/SiN on soda lime glass respectively,

if the dipole matrix is orthogonal to the waveguide surface. The coupling efficiency

will increase by factor of a 2 and this is because the atom emits light only in xy plane

and there is no emission in z direction.
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4.6 Conclusion

The spontaneous emission of an atom is related to the density of state(DOS),

DOS of a medium is directly proportional to the refractive index of the material.

The DOS and spontaneous emission rate increases as atom enters in the vicinity of

the waveguide. The number of guided modes depends upon the difference of film

refractive index and the substrate refractive index. As the difference increases, the

number of guided modes increase and more light guided through the waveguide. As

we see, the coupling efficiency increases in order from Al2O3, SiN , through silicon

membrane.

In conclusion, we have studied efficiency of spontaneous light emission into

guided modes of a thin film. We shown that fluorescence of molecules absorbed at

the surface of the waveguide is coupled to the guided modes with efficiency comparable

to the case when emitter is placed inside of a film. we have also shown that in case

of dipole matrix element orthogonal to the plane of the waveguide, the efficiency can

be order of magnitude higher if the molecules are absorbed at the surface compared

to the case of when emitters are inside of a film.
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CHAPTER 5

Conclusion

The optical and waveguide properties of Al2O3 deposited by atomic layer deposi-

tion technique was investigated. The quality of the surface was better than other

deposition technique. The surface roughness of Al2O3 film was approx. ±0.3 nm

over film thickness of 400 nm, 300 nm, and 200 nm measured by atomic force mi-

croscope. Atomic layer deposition provides uniform thickness over entire sample.

The film thickness was calculated by measuring reflection spectrum at ten different

points. The average film thickness for Al2O3 film on silicon substrate was 413.15±5

nm, 307.61±5 nm, and 202.50±5 nm for targeted film thickness 400 nm, 300 nm,

and 200 nm, respectively. The average film thickness for Al2O3 film on soda lime

glass substrate was 392.27±10 nm, 297.85±7 nm, and 184.08±5 nm for targeted film

thickness 400 nm, 300 nm, and 200 nm, respectively. The propagation loss was 7

dB/cm for 632.8 nm wavelength.

The microspectrometer of size 12 mm x 12 mm was fabricated by using optical

waveguide as a base. Its spectral resolution was 2.5 nm in spectral range of 425 nm

- 700 nm, which is better than existing microspectrometer. The careful design of

diffractive optical element was demonstrated by using Matlab, LASI, and Ledit. This

microspectrometer is integrated in a planar optical waveguide and will become good

base for fabrication of micro-fluidic channels. There is a good scope to build a lab

on a chip with this design for bio-sensors and chemical sensors. Micro-fluidic channel

can be used to transport analyte to the optical waveguide surface and the optical

signature of analyte can be analyses by using microspectrometer.

The coupling efficiency of a quantum emitter was investigated and is directly
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related to the refractive index of the film and position of quantum emitter with

respect to the surface of waveguide. The coupling efficiency for Al2O3, SiN , and

stand alone silicon membrane was calculated. If quantum emitter was placed on the

surface of planar waveguide, it will emit 30% of radiation into the guided mode for

Al2O3, SiN thin film on soda lime glass. The most interesting case was related to

the orientation of dipole element matrix. If an atom or molecule has dipole matrix

element orthogonal to the surface of planar waveguide, then the coupling efficiency

of such system is more as compared to the atom or molecule placed inside the film

layer. The calculated coupling efficiency was approx. 60% for Al2O3, SiN thin film

on soda lime glass.
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Waveguide is one of the basic components of integrated optics and optoelectron-

ics. It consists of a substrate and a high refractive index thin film which confines and

directs light. Strong light confinement in a thin film is needed for many applications.

For instance, in sensors strong confinement provides high sensitivity, in integrated

optical circuits that complement or in some cases substitute micro-electronic circuits

strong light confinement allows for smaller footprint of optoelectronic devices. In this

dissertation we study optical properties of high-index step waveguides fabricated by

atomic layer deposition and their use in a waveguide-based microspectrometer em-

ploying a computer-generated diffractive optical element, and explore feasibility of

enhancing efficiency of spontaneous emission of individual atoms into guided modes

of a high-index waveguide.

Aluminum Oxide (Al2O3) is a widely used material in micro-electronics. It is

cost effective, and the necessary raw materials are widely available. Atomic layer

deposition (ALD) is expected to provide atomic scale smoothness of the film surface

as well as low porosity of the film and, as a result, superior quality of optical waveg-



www.manaraa.com

74

uides. However, because of low growth rate, there are only limited studies of ALD

waveguides. We report optical properties of ALD alumina films grown on soda lime

and silicon substrates.

Strong light confinement in a high index step waveguide is critical for achieving

high resolution in a small footprint waveguide-based microspectrometer. Here we

describe design, fabrication, and testing of a diffractive imaging microspectrometer

implemented using an ALD HfO2. Spectral resolution of 2 nm across the entire

visible range from 425 nm to 700 nm is achieved in a device with optical components

only a few millimeters across.

We also investigated spontaneous emission of atoms placed in close proximity

of a high-index planar waveguide. It has been found that a high-index waveguide

film provides additional radiative channels and thus enhances the emission rate. The

quantum electrodynamics was applied to calculate coupling efficiency of spontaneous

emission into the guided modes of the film. The case of special interest is when the

dipole matrix element of the transition of interest happens to be orthogonal to the

waveguide surface. We found that this configuration may provide improved efficiency

of coupling spontaneous emission into the guided modes of the film.
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